

PNEUMATIC WHEELS

WPNU-PNEUMATIC SERIES

0	Ø	1			
260	25	70	65	150	WPNU 103P25
400	25	90	75	200	WPNU 164P25

FEATURES

- Inflated tyre and tube
- A Nylon or steel centre
- 🖌 Available in plain bore or ball bearing

For ball bearing add B eg. WPNU1030B25 •Available in 2,4 and 6 ply tyres

STEEL SPLIT DISC RANGE - SOLID RUBBER

WSS-STEEL SPLIT CENTRE SERIES

$\mathbf{\hat{O}}$	(\emptyset)	1				
150	25	50	60	140	WSS 150P25	WSS 150B25
200	25	50	60	140	WSS 200P25	WSS 200B25
250	25	50	60	150	WSS 250P25	WSS 250B25
300	25	50	60	150	WSS 300P25	WSS 300B25
350	25	75	90	180	WSS 350P25	WSS 350B25
350	25	100	90	180	WSS 350/4P25	WSS 350/4B25
400	25	100	90	200	WSS 400P25	WSS 400B25

FEATURES

- A Rubber tyred wheels
- Split steel centre
- 🖌 Available in plain bore or ball bearing
- Split disc wheels, steel centre, rubber tyre, nylon bush
- Centres are galvanized or powder coated

For ball bearing add B eg. WSS150B25

CASTORS

& WHEELS

NYLON SPLIT DISC - SOLID RUBBER

AVAILABLE IN ANY COLOUR - MIN QUANTITIES REQUIRED

WSN-NYLON SPLIT CENTRE SERIES

\bigcirc	(\emptyset)	(
150	25	50	60	140	WSN 150
200	25	50	60	140	WSN 200

PLAIN BORE ONLY

FEATURES

- Rubber tyred wheels
- Split nylon centre
- 🔺 Available in plain bore

CASTORS & WHEELS

RUBBER TYRED PI SERIES

PI-GREY RUBBER TYRED SERIES

\bigcirc	Ø					
50	8	19	24	60	PIP 50P	-
75	8	22	30	70	PIP 75P	-
100	12.5	32	40	100	PIP 100	PIB 100
125	12	32	40	120	PIP 125	PIB 125

FEATURES

- Grey rubber tyre bonded to nylon centre
- Available in plain bore or ball bearing
- Economical and hard wearing
- Guaranteed tyre bond to centre

Available in plain bore or ball bearing

CASTORS

& WHEELS

URETHANE TO NYLON - WPN SERIES

AVAILABLE IN ANY COLOUR - MIN QUANTITIES REQUIRED

0	Ø	Ũ				
100	14	32	48	100	PNB100	PNP100
125	14	32	48	150	PNB125	PNP125
160	25	45	60	200	PNB160B25	PNP 160
200	25	45	60	300	PNB200B25	PNP200
250	25	45	60	300	-	PNP250

PN-POLYURETHANE ON NYLON CENTRE

FEATURES

POLYURETHANE TYRE BONDED TO NYLON CENTRE(WPN)

- Guaranteed tyre bond to centre
- Injected polyurethane tyre
- Excellent resistance to corrosion and abrasion
- Available in ball bearing or plain bore

For ball bearing add B eg. WPNB100B

CASTORS & WHEELS

POLYPROPYLENE / NYLON WHEELS

WED 5P

WED 3P

WED-POLYPROPYLENE

0	(\emptyset)	1			
50	6	18	24	60	WED 2P
65	8	22	36	90	WED 2.5P
75	12	25	38	110	WED 3P
100	14	30	48	200	WED 4P
125	14	30	48	300	WED 5P
150	20	38	60	400	WED 6P
200	20	45	60	500	WED 8P

PALLET TRUCK ROLLER

$\mathbf{\hat{O}}$	(\emptyset)	₽			
85	20	75	75	300	WNY85-75B 20
85	20	100	100	300	WNY85-100B 20

For ball bearing add B eg. WNY 8B

FEATURES

- Virgin nylon 6 material / polypropylene
- Wheels or load rollers
- Excellent running
- Low starting effort on smooth floors
- A Hygienic
- High resistance to corrosion and abrasion
- Available in plain bore or ball bearing

CASTORS & WHEELS

PHENOLIC WHEELS

10				
11		11		
	and a second second	HE	AT RES	
	R A A		P TO 2	ISTANT 70ºC

0	Ø				
75	12	33	41	100	WAN 3P
100	15	38	41	120	WAN 4P
125	15	34	41	150	WAN 5P
150	25	42	56	200	WAN 6P
200	25	42	57	300	WAN 8P

FEATURES

- Phenolic resin wheels
- 🖌 High temperature applications
- 🖌 Hard wearing
- Alternative to cast iron in bakeries and general food industries
- Load rating of wheel decreases as temperature increases

SUPER CUSHION RUBBER TYRED WHEELS

SC-SUPER CUSHION SERIES

$\mathbf{\hat{O}}$	Ø	\mathbf{r}			
160	20	50	60	250	SC160B20
200	20	50	60	300	SC820B20
200	20	75	90	400	SC830B20
250	20	50	60	500	SC1020B20
250	20	75	90	500	SC1030B20
300	20	50	60	600	SC1220B20
300	25	75	90	600	SC1230B25
300	25	100	130	600	SC1240B25
350	25	75	90	700	SC1430B25
400	25	75	90	800	SC1630B25
400	25	100	130	800	SC1640B25

FEATURES

- SUPER CUSHION BLACK RUBBER TYRE BONDED TO CAST IRON CENTRE
- Ideal for towing applications
- Guaranteed tyre bond to centre
- Super cushion rubber tyre
- Excellent resistance to abrasion and shocks

CASTORS

& WHEELS

Available in plain bore or ball bearing

These wheels are standard with ball bearings Load ratings vary according to speed in towing applications

BONDED RUBBER WHEELS

HEAVY DUTY-BONDED RUBBER WHEELS

\bigcirc	Ø	(
100	12	30	45	135	WRT412B12
100	20	38	60	150	WRT415B20
125	20	38	60	200	WRT515B20
150	20	38	60	300	WRT615B20
150	25	50	90	350	WRT620B25
200	20	50	60	400	WRT820B20
250	25	50	60	400	WRT1020B25
250	25	75	60	400	WRT1030B25
250	25	50	60	400	WRT1220B25
250	25	100	60	400	WRT1240B25
250	25	50	60	400	WRT1420B25
250	25	75	60	400	WRT1430B25
250	25	75	60	400	WRT1630B25
250	25	100	60	400	WRT1640B25

Available in plain bore, ball bearing For plain bore add P eg. WRT412P For ball bearing add B eg. WRT412B

FEATURES

- Rubber tyre bonded to cast iron centre
- Ideal for towing applications
- Guaranteed tyre bond to centre
- Excellent resistance to abrasion and shocks
- Available in plain bore or ball bearing

CASTORS & WHEELS

SCAFFOLD CASTORS

POLYURETHANE TO CAST IRON WHEELS

PU-POLYURETHANE WITH CAST IRON CENTRE

\bigcirc	Ø	1			
75	12	22	38	120	WPU3P
100	14	30	48	250	WPU412
100	14	38	60	250	WPU415
125	14	30	48	250	WPU512
125	20	38	60	300	WPU515
150	20	38	60	500	WPU615
150	20	50	60	600	WPU620
200	20	38	60	800	WPU815
200	20	50	60	1000	WPU820
200	25	70	90	1200	WPU830
250	25	50	60	1000	WPU1020
250	25	75	90	1500	WPU1030
300	25	50	60	1500	WPU1220
300	25	75	90	2000	WPU1230
300	25	100	120	2200	WPU1240
350	25	50	60	1500	WPU1420
350	25	75	90	2000	WPU1430
400	25	75	90	2000	WPU1630
400	25	100	120	2400	WPU1640

FEATURES

POLYURETHANE TYRE BONDED TO CAST IRON CENTRE (PU)

- Guaranteed tyre bond to centre
- Cast polyurethane tyre
- Excellent resistance to corrosion and abrasion
- Available in ball bearing or plain bore
- Wheels can be specially manufactured to take load of up to 40%more

POLYURETHANE TO STEEL ROLLERS

PALLET TRUCK ROLLERS

\bigcirc	(\emptyset)	1			
85	20	82	83	500	WPU85-75B20
85	20	100	100	500	WPU85-100B20

FEATURES

POLYURETHANE TYRE BONDED TO CAST IRON CENTRE (PU)

- Guaranteed tyre bond to centre
- Cast polyurethane tyre
- Excellent resistance to corrosion and abrasion
- Available in ball bearing only
- Wheels can be specially manufactured to take loads of up to 40%more

CASTORS

& WHEELS

CAST IRON WHEELS

CI-CAST IRON SERIES

CASTORS

& WHEELS

0	(\emptyset)	1			
75	12	22	38	120	WCI3P
100	14	30	48	250	WCI412
100	14	38	60	250	WCI415
125	14	30	48	250	WCI512
125	20	38	60	300	WCI515
150	20	38	60	500	WCI615
150	20	50	60	500	WCI620
200	20	50	60	900	WCI820
200	25	65	90	1200	WCI830
250	25	50	60	1000	WCI1020
250	25	75	90	1500	WCI1030
300	25	50	60	1500	WCI1220
300	25	75	90	2000	WCI1230
350	25	50	60	1500	WCI1420
350	25	75	90	2500	WCI1430
400	25	75	90	2500	WCI1630

V-GROOVE AND FLANGE CAST IRON WHEELS

\bigcirc	Ø	1			V-GROOVED	FLANGED
100	20	50	60	500	WCIV100	
150	20	50	60	500	WCIV150	WCIF150
200	20	50	60	500	WCIV200	WCIF200

FEATURES

CAST IRON

Low starting effort on smooth hard surfaces

Available in plain bore or ball bearing

Cast iron v-grooved and flanged wheels are available in sizes up to 200mm diameter. Wheel specifications available from your nearest branch.

Add BB for ball bearing

LAWN MOWER & HOBBY WHEELS

LAWN MOWER & HOBBY WHEELS

14

\bigcirc	(\emptyset)	Ţ			
150	12	35	45	20	SR0601
175	12	35	45	40	SR0701
200	12	40	45	50	SR0801

For semi-prec ball bearing add SPB eg. SR0602

FEATURES

BLACK RUBBER TYRE ON PRESSED STEEL CENTRE

- Light duty
- Pressed steel centre
- Rubber tyre
- Available with semi-precision bearing

CASTORS

& WHEELS

INSTITUTIONAL CASTORS

FEATURES

- Bolt hole or plate fitting
- Wheel grey non-marking or nylon
- Pressed steel housing
- Zinc plated
- Double swivel bearing
- Available in swivel or swivel/brake combination

CASTORS & WHEELS

Please confirm bolt hole centres and plate sizes with your nearest branch before drilling or punching holes.

SUPERMARKET / INSTITUTIONAL CASTORS

CASTORS

& WHEELS

MEDIUM DUTY INDUSTRIAL CASTORS

CASTORS & WHEELS

EEZEELASTIC

EE

MEDIUM DUTY INDUSTRIAL CASTORS

MEDIUM DUTY INDUSTRIAL CASTORS

HEAVY DUTY CASTORS

Available in swivel, fixed and swivel/brake combination

CASTORS

& WHEELS

ASTI

drilling or punching holes.

HEAVY DUTY CASTORS

TH8PUBBRK Swivel brake

Fixed

FOOT BRAKE SHOWN. COMPETITIVELY PRICED THUMB BRAKE ALSO AVAILABLE.

LOADING kg 400-1000

TH/THR SERIES - PLATE FITTING

	\bigcirc	Ū,			Ø		J
1	100	150	150x110	400	TH4 <mark>PUB</mark>	THR4PUB	TH4PUBBRK
1	125	155	150x110	500	TH5 <mark>PUB</mark>	THR5PUB	TH5PUBBRK
1	150	170	150x110	600	TH6PUB	THR6PUB	TH6PUBBRK
1	200	250	150x110	900	TH8PUB	THR8PUB	TH8PUBBRK
1	250	300	150x110	1000	TH10PUB	THR10PUB	TH10PUBBRK
	300	350	150x110	1000	TH12PUB	THR12PUB	TH12 <mark>PUB</mark> BRK

To move heavy loads more easily, use our THTW and THRTW twin castor series. To order twin castors just add TW to the code

<u>FEATURES</u>

- Plate fitting
- Fabricated steel housing
- Zinc plated
- Heavy duty single swivel bearing
- Available in swivel, fixed or swivel/ brake combination

AVAILABLE \bigcirc 0 0

OPTIONS

Please confirm bolt hole centres and plate sizes with your nearest branch before drilling or punching holes.

CASTORS & WHEELS

ZEELASTIC

EE

HEAVY DUTY CASTORS

THTW6PUB

THTW/THRTW SERIES - PLATE FITTING

\bigcirc	Ø,			Ø		T
100	150	150x110	800	THTW4PUB	THRTW4PUB	THTW4PUBBRK
125	175	150X110	1000	THTW5 <mark>PUB</mark>	THRTW5PUB	THTW5PUBBRK
150	200	150X110	1000	THTW6PUB	THRTW6PUB	THTW6PUBBRK
200	250	150X110	1000	THTW8PUB	THRTW8PUB	THTW8PUBBRK
250	300	150X110	1000	THTW10PUB	THRTW10PUB	THTW10PUBBRK
300	350	150X110	1000	THTW12PUB	THRTW12PUB	THTW12PUBBRK

These castors are standard with polyurethane wheels. Other wheels available PN-Polyurethane on nylon, CI-Cast iron wheels, SC- super cushion

FEATURES

- 🖌 Twin wheel castor
- Plate fitting
- Fabricated steel housing
- Zinc plated
- Heavy duty single swivel bearing
- Available in swivel, fixed or swivel /brake combination

CASTORS

& WHEELS

THTW/THRTW

SERIES

LOADING kg

Please confirm bolt hole

centres and plate sizes with

your nearest branch before drilling or punching holes.

0

0

0

TOWING CASTORS

FOOT BRAKE AND DIRECTIONAL LOCK AVAILABLE

STS SERIES TOWING CASTORS

STS

SERIES

$\mathbf{\hat{O}}$	1	₩	28		Ø		J
100	38	150	150x110	200	STS415 <mark>SCB</mark>	STF415 <mark>SCB</mark>	STS415 <mark>SCB</mark> BRK
125	38	175	150x110	300	STS515 <mark>SCB</mark>	STF515 <mark>SCB</mark>	STS515 <mark>SCB</mark> BRK
160	50	200	150x110	400	STS620SCB	STF620 <mark>SCB</mark>	STS620SCBBRK
200	50	250	150x110	400	STS820SCB	STF820 <mark>SCB</mark>	STS820SCBBRK
200	75	250	150x110	500	STS830SCB	STF830 <mark>SCB</mark>	STS830SCBBRK
250	50	300	150x110	500	STS1020SCB	STF1020SCB	STS1020SCBBRK
250	75	300	150x110	600	STS1030SCB	STF1030 <mark>SCB</mark>	STS1030SCBBRK

o move heavy loads more easily, use our STSTW and STFTW twin castor series To order twin castors just add TW to the code These castors are standard with super cushion wheels Other wheels recommended

PU- polyurethane bonded to cast iron, RE-Resilex, PNU-Pneumatic

FEATURES

- Plate fitting
- Fabricated steel housing
- 🥖 Zinc plated
- Combination thrust bearing and tapered roller bearing swivel
- Available in swivel, fixed or swivel/ brake combination

CASTORS & WHEELS

Please confirm bolt hole centres and plate sizes with your nearest branch before drilling or punching holes.

EXTRA HEAVY DUTY CASTORS

LT SERIES EXTRA HEAVY DUTY CASTORS

0	<u>ل</u>			Ø	
150	205	240x130	1200	LT6 <mark>PUB</mark>	LTR6PUB
200	255	240x130	1500	LT8PUB	LTR8PUB
250	305	240x130	1500	LT10PUB	LTR10PUB
300	355	240x130	2000	LT12PUB	LTR12PUB
350	405	240x130	2500	LT14PUB	LTR14PUB
400	455	240x130	2500	LT16PUB	LTR16PUB

To move heavy loads more easily, use our LTTW and LTRTW twin castor series To order twin castors just add TW to the code These castors are standard with polyurethane wheels Other wheels recommended

CI- Cast iron

CASTORS

& WHEELS

FEATURES

- Plate fitting
- Fabricated steel housing
- Extra heavy duty single swivel bearing
- Available in swivel and fixed

Please confirm bolt hole centres and plate sizes with your nearest branch before drilling or punching holes.

EXTRA HEAVY DUTY CASTORS

TTTW8 PUB

	-		1
	NSA PRINT		/
		0	

LT TWIN SERIES

$\mathbf{\hat{O}}$	<u> </u>				
150	205	240x130	2000	LTTW6 <mark>PUB</mark>	LTRTW6PUB
200	255	240x130	2400	LTTW8PUB	LTRTW8PUB
250	305	240x130	3000	LTTW10PUB	LTRTW10PUB
300	355	240x130	4000	LTTW12PUB	LTRTW12PUB
350	405	240x130	5000	LTTW14PUB	LTRTW14PUB
400	455	240x130	5000	LTTW16PUB	LTRTW16PUB

These castors are standard with polyurethane wheels Other wheels recommended CI-Cast iron

FEATURES

- Plate fitting
- Fabricated steel housing
- Zinc plated
- Combination thrust bearing and tapered roller bearing swivel

ZEELASTIC

Available in swivel, fixed or swivel/ brake combination

AVAILABLE

OPTIONS

Please confirm bolt hole centres and plate sizes with your nearest branch before drilling or punching holes.

CASTORS & WHEELS

GATE ROLLERS

WVG 60-KIT

GATE ROLLER KITS

\bigcirc	Ø		A	
60	12	40	100	WVG60
80	12	40	120	WVG80

FEATURES

ALADDER

Each kit contains two fabricated steel v-grooved wheels in brackets and two nylon gate guides
 Wheels utilise precision ball bearings that are easy to replace

1.0 SPECIFICATION FOR STANDARD WHEELS & CASTORS

- 1. Plain bore tolerances are + 0,57-0,00mm
- 2. Standard tolerances on width and diameter +- 0,25mm
- 3. All wheels are fitted with grease nipples, other than keywayed wheels, nylon/nylon centred wheels or wheels of 75mm or 100mm diameter
- 4. Wheels of 75mm or 100mm diameter fitted with ball journals have pre-lubricated double-shielded bearings
- 5. All wheels supplied with ball journals, other than those of 75mm or 100mm diameter, have bearings with a single shield fitted to the other side unless otherwise stated.
- 6. All wheels with ball or roller bearings, other than those fitted with pre-lubricated double shielded ball journals are supplied un-greased to avoid contamination during shipment.
- 7. All wheels fitted with ball journals have a central spacer between the bearings to allow them to be clamped to an axle abutment shoulder without pre-loading the bearings.
- 8. Taper roller bearings are supplied with the outer (cup) race press fitted, and the inner cone and roller assembly, together with metal shields, supplied loose.
- 9. All cast wheels are finished in one coat of self-etching black primer paint.
- 10. Fully machined wheels or axles from billet or barstock are protected by a coat of air-drying oil.
- 11. Pressed steel castor brackets are finished in bright zinc electroplating to BS1706.
- 12. Fabricated castor brackets are finished in one coat of self-etching black primer paint.

2.0 UNTYRED WHEELS

When less than the full tread width is used to carry the load, the allowable load can be determined as follows:-Allowable load = load carrying width x "Maximum load Rating" (per catalogue) full tread width

3.0 RUBBER TYRED WHEELS

3.1 LOAD RATING

The 'Maximum Load Rating' given for each rubber tyred wheel is the maximum load the wheel will carry in constant use under the following conditions:

- a) the wheel is free-wheeling (not driving)
- b) the ambient temperature is below 30 degrees C
- c) the surface speed does not exceed 6kph
- d) the surface on which the wheel runs is flat and smooth (i.e steel or smooth concrete)
- e) that the wheel is not steering or subjected to axial loads
- f) no chemical is present which will attack rubber (see 3.2)

For more severe conditions than those described above refer to SA Ladder for the allowable load, or consider polyurethane tyred wheels.

3.2 RESISTANCE TO CHEMICALS

- A little or no effect
- B moderate effect
- C severe effect .

Acetic Acid	С	Formaldehyde	С	Mineral Oils	С	
Acetone	С	Formic acid	В	Naphtha	С	
Ammonium hydroxide	С	Fuel oil	С	Naphthalene	С	
Barium hydroxide	В	Gasoline	С	Nitric acid	С	
Benzene	С	Glue	В	Oil-lubricating	С	
Borax	А	Hydraulic oils	С	Palmic acid	С	
Boric Acid	А	Hydrochloric acid-cold	А	Perchlorethylene	С	
Butane	С	Hydrochloric acid-10%	Α	Phenol	С	
Calcium Bisulphite	С	Hydrochloric acid-hot	С	Phosphoric acid-85%	А	
Calcium chloride	А	Hydrochloric acid-30%	С	Sodium hydroxide	С	
Calcium hydroxide	В	Hydrogen	В	Soybean oil	С	
Carbon dioxide	А	Isopropyl ether	С	Sulphuric acid 10%	Α	
Carbon monoxide	С	JP-3	С	Sulphuric acid 50%	С	
Carbon tetrachloride	С	JP-4	С	Tannic acid	Α	
Castor oil	В	Kerosene	С	Toluene	С	
Chlorine	С	Linseed oil	С	Trichloroethylene	С	
Chromic acid	С	Magnesium chloride	Α	Turpentine	С	
Cottonseed oil	С	Magnesium hydroxide	Α	Water	А	
Cyclohexane	С	Methyl alcohol	Α	Xylene	С	
Ethyl acetate	С	Methyl ethyl ketone	С	Zinc sulphate	Α	
Ethyl alcohol	А	Mercury	А			

CASTORS & WHEELS

The 'Maximum Load Rating' given for each polyurethane tyred wheel is the maximum load the wheel will carry in intermittent use (a maximum of 1 hour running followed by a minimum of 1 hour at rest) under the following conditions:

a) the wheel is free-wheeling (not driving)

b) the ambient temperature is below 45 degrees C

- c) the surface speed does not exceed 6 k.p.h.
- d) the surface on which the wheel runs is flat and smooth (i.e. steel or smooth concrete)
- e) that the wheel is not steering or subjected to axle load
- f) no chemical is present which will attack polyurethane (see 4.2)

For more severe conditions the 'Maximum Load Rating' must be multiplied by the 'load factor' as follows:

Condition	Load factor
continuous running	0.75
surface speed 6-10 kph	0.8
surface speed 10-16	0.7
driving wheels	0.7

For speeds over 16 kph, for operating temperatures over 45 degrees C and below 20 degrees C, for humid conditions, and for curved running surfaces (i.e. in supporting rotating drums) refer to SA Ladder for the allowable load.

LOAD factors must cumulate, for example:

a wheel with a 'maximum load rating' of 1000kg is to be subjected to continuous running at 8kph in a driving application, allowable load = 1000kg x 0.75 (continuous running factor) x 0.8 (speed factor) x 0.7 (driving factor) = 420kg

4.2 RESISTANCE TO CHEMICALS

A - little or no effect

B - moderate effect

C - severe effect .

Acetic Acid 20% max	В	Formic acid	С	Palmic acid	А	
Acetone	С	Fuel oil	В	Percthlorethylene	С	Ĺ
Ammonia hydroxide	А	Gasoline	В	Phenol	С	Ĺ
Barium hydroxide	А	Glue	А	Phosphoric acid 70%	А	Ĺ
Benzene	С	Hydraulic oil	В	Phosphoric acid 80%	С	Ĺ
Borax	А	Hydrochloric acid-20%max	В	Potassium hydroxide	В	Ĺ
Boric acid	Α	Hydrochloric acid-30%+	С	SAE No. 10 oil(70%)	Α	Ĺ
Butane	Α	Hydrogen	А	Sea water	А	Ĺ
Calcium bisulphite	Α	Isopropyl ether	В	Soap solutions	Α	Ĺ
Calcium chloride	Α	JP-4	В	Sodium hydroxide-20%max	Α	Ĺ
Calcium hydroxide	Α	JP-5	С	Sodium hydroxide-45%max	В	Ĺ
Carbon dioxide	Α	JP-6	С	Sodium hypochlorite	С	Ĺ
Carbon monoxide	Α	Kerosene	В	Soybean oil	В	Ĺ
Carbon Intrachloride	С	Ketone	С	Slearic acid	С	Ĺ
Castor oil	Α	Linseed oil	В	Sulphuric acid 10%max	Α	Ĺ
Chlorine	С	Magnesium chloride	Α	Sulphuric acid 10%+	В	Ĺ
Chromic acid	С	Magnesium hydroxide	Α	sulphuric acid 50%	С	Ĺ
Copper chloride	Α	Mercury	Α	Tannic acid	Α	Ĺ
Copper sulphate	Α	Methyl alcohol	С	Toluene	С	Ĺ
Cottonseed oil	A	Methyl ethyl	С	Trichlorothylene	С	Ĺ
Cyclohexane	Α	Mineral oils	Α	Turpentine	С	Ĺ
Ethyl acetate	С	Naptha	В	Water (45%)	Α	Ĺ
Ethyl alcohol	С	Napthalene	В	Water (100%)	С	Ĺ
Ethylene glycol	В	Nitric acid	С	Xylene	С	
Formaldehyde	С	Oils-lubricating	В			

5.0 CALCULATION OF PRINT AREA FOR SOLID TYRES

The deflection of solid tyre under load should not exceed 15% of the tyre thickness to prevent premature failure of the tyre

due to overload.

C = 2 h(2r-h)Area of print = C x tread width (footprint)

where:

C h r length of flat produced under load deflection (15% max of tyre thickness) radius of wheel

=

=

CASTORS & WHEELS

WHEEL TYPE	TYRE THICKNESS MM	WHEEL TYPE	TYRE THICKNESS MM	WHEEL TYPE	TYRE THICKNESS MM
R75/36, R75/35	12.5	H200/75	20	PH250/75,PH250/125	20
H85/75	12.5	R250/45,R250/70,H250/45,H250/70	12.5	PH300/75	20
R100/40, H100/40, H100/100	12.5	H250/97.5	25	PH300/75,PH380/100,PH380/125	37.5
R125/30, R125/45, H125/30, H125/45	12.5	R300/50,R300/75,H300/5, H300/75,	25	PH460/75,PH400/100	42.5
H150/35, R160/50, H150/35, H150/50	12.5	H350/100	25	PH500/75,PH500/100	37.5
H150/160	25	H400/100,H400/125	30		
R200/40, R200/60, H200/40, H200/60	12.5	H460/75	35		

6.0 RAIL WHEELS

6.1 APPROXIMATION OF ALLOWABLE LOAD FOR CATALOGUE ITEMS

The 'maximum load rating' given for each rail wheel (types CSF, SSF, CDF, CFT and SFT) is the maximum load the wheel can carry without permanent deformation and to give an acceptable service life when the full tread width is in contact with the rail.

In practice full contact with the rail across the tread width is rarely achieved due to

a) flange to rail clearance

b) wheel coverage

c) rail corner radi

Allowable load capacities of catalogue items used on given rail can be determined as follows:

Allowable Load = useable Rail width (per 6.2.3)

_____ x maximum load rating (per catalogue)

full tread width (per catalogue)

NOTE:

- 1) the 'useable rail width' (per para 6.2.3) takes into account the profile of the rail head, whether convex or flat.
- the above applies to wheels with very light axial (flange) loads when fitted with bearings. Heavy axial loads will severely limit the radial load carrying capacity of the bearings - see 7.1

3) 'Maximum Load Ratings ' of catalogue items are based on PL = 0.56, C1 = 1.1 C2 = 0.9 for steel wheels and PL = 0.15

C2 = 0.8 for cast iron wheels - refer to 6.2 & 6.3 for relevant equations.

6.0 RAIL WHEELS

The following equations can be used for wheels of up to 1.25 diameter of cast, rolled or forged steel, or S.G cast iron, to determine the relationship between: 1) wheel diameter

2) ultimate strength of wheel material

3) load capacity

4) service life

5) the useable width of the rail

6) speed rotation of the wheel

a) for the wheel to with stand the maximum static load to which it is subjected:

$$\frac{PL2}{b \times D \times C1 \max \times C2 \max} = \frac{Ps \operatorname{mean}}{b \times D \times 1,38}$$

and

b) For the wheel to perform its specified duty without abnormal wear:

	PL2	Pd mean			
		bxDxC1>	c C2		
Where		D	= wheel diameter (mm)		
		b	= useable rail width (mm) - see 6.2.4		
		PL	= limiting pressure (kgf/mm2) - see 6.2.1		
		C1	= a coefficent determined by r.p.m see 6.2.2		
		C1max	= 1.2		
		C2	= a coefficent determined by ' machine life and utilisation ' - see 6.2.3		
		C2 max	= 1.15		
		Ps mean	= the mean static load to be withstood by the wheel (kg)		
			= <u>2P2 max + P2 min</u>		
			3		
		Pd mean	= the mean dynamic load to be withstood by the wheel (kg)		
			= 2 Pd max + Pd min		
			3		
6.2.1 Determining the limited pressure PL (as a function of the ultimate strength of the					

metal of which the rail wheels made)

Notes: 1)

In the case of wheels heat treated to increase the surface hardness, the
value of PL is limited to that of the steel prior to surface treatment
The "limiting pressure" PL is a rational pressure determined by supposing
that the contact between wheel and rail takes place over a surface
whose length is a diameter of the wheel, and width is the "useable rail width" b.

6.2.2 Determining coefficiant C2

Determine coefficient C2 (machine life and utilisation)

Should a longer service life be required for a given material whose load/life properties have been determined per paragraph 6.2 refer to paragraph 6.4 'Surface Hardening'.

Wheel rotational	61	Wheel rotational	C1	Wheel rotational	C1	litilisation	Service Life - Hours							
speed R.P.M.	51	speed R.P.M.	01	speed R.P.M.	CI	otinisation	400	800	1600	3200	6300	12000	25000	5000
5.0	1.17	20.0	1.06	63	0.91	Mechanisms subjected very rarely to their maximum load	1.12	1.12	1.12	1.12	1.12	1.00	0.90	0.80
5.0	1.16	22.4	1.04	71	0.89	and, normally, to very high loads								
0.3	1.15	25.0	1.03	80	0.87	Mechanisms occasionally								
8.0	1.14	28.0	1.02	90	0.84	subjected to their maximum	1.12	1.12	1.12	1.12	1.00	0.90	0.80	0.80
10.0	1.13	31.5	1.00	100	0.82	to rather lighter loads								
11.2	1.12	35.5	0.99	112	0.79	Mechanisms frequently	1 1 0	1 1 0	1 1 2	1 00	0.00	0.90	0.90	0 00
12.5	1.11	40.0	0.97	125	0.77	and, normally to loads of medium	1.12	1.12	1.12	1.00	0.90	0.00	0.00	0.00
14.0	1.10	45.0	0.96	160	0.72	magnitude								
16.0	1.09	50.0	0.94	200	0.66	Mechanisms frequently or constantly subjected to their	1.12	1.12	1.00	0.90	0.80	0.80	0.80	0.80
18.0	1.07	56.0	0.92			maximum load								

CASTORS & WHEELS

6.2.3 Determining the useable rail width, b The useable rail is determined by the following equations:

- for convex topped rails b(mm)=C- 4/3 r $\,$ 1) (these are generally flat bottomrails)
- 2) for flat topped rails b(mm) = C - 2r (these are generally bridge, crane and barstock rails)

30

CALCULATION OF ALLOWABLE LOAD - CAST IRON RAIL WHEELS 6.3

While grey cast iron wheel are the most economic for light to medium duty, they are not suitable for high rotational speeds or where substantial shock loadings are to be withstood . Their performance is not as predictable as that of steel or S.G.iron wheels due principally to the presence of flake graphite which encourages 'spalling' of the surface.

6.3.1. Allowable Load - grey iron as cast

- The relationship between Where:
- D = wheel diameter (mm) b
 - = useable rail width (mm) see 6.2.3

C2 max =0.8

- 1) wheel diameter
- 2) load capacity PL= 0.15 (a conservative value to provide an acceptable service life)
- 3) usable rail width

but not service life, can be approximated by the equation PL = Pmax P max = max load to be withstood by the wheel(kg)

b x Dx C2 max

6.3.2. Allowable load - chilled cast iron or surface hardened cast iron. Chilling or surface hardening of cast iron refines and hardens the surface to give an economic wheel capable of carrying moderate loads with a service life similar to that of comparable steel wheels. For cast iron wheels having a hardened surface, the equation for steel wheels applies (para 6.2) with a value PL = 0,50

6.4 SURFACE HARDENING

Surface hardening can extend service life beyond that given in para 6.2.3. a guide to the relationship between surface hardness and service life being:

Surface Hardness (Hv)	Life Factor (240Hv=1)
240	1.0
380	1.7
320	2.0
360	2.2
400	2.3

Kc

Where : Otu= tensile strength of the wheel material (N/mm2)

- tf = Flange thickness (mm)
- N = Flange Saftey factor (2.0 min recommendation)
- Km = load factor •1.0 for gradually applied loads
 - •1.5 for suddenly applied loads
 - = casting factor (for cast wheels only) 1.5
- 0 = dimension (mm) from tread to point of application of load P as shown:

Note: Moments about bearings and axle loads on bearings due to flange loads must be taken into account when selecting bearings and axle/bearing arrangements see 7.1

7.0 BEARING AND SEAL ARRANGEMENTS - NON STANDARD WHEELS

7.1 Selection Of Bearings

The main considerations in the selection of bearings are:

- 1. radial load
- 2 axle load
- 3. speed of rotation
- 4. bearing friction

CASTORS WHEFLS

In selecting ball or roller bearings it is important that the static and/or dynamic radial load rating requirement for each bearing should be determined taking into account a) the radial load b) the radial equivalent or any axle load (as given in the bearing manufacturer's catalogue), and c) the radial load resulting from the moment of the axle load acting about the bearings. It should be noted that in most bearing arrangements axle loads are taken by only one bearing, and that loads caused by condition c) above usually act positively on one bearing (being added to the radial load) and negatively on the other bearing (being deducted from the radial load)

DESCRIPTION	GENERAL Arrangement	RADIAL LOAD		SPEED OF ROTATION	BEARING Friction
1. Plain bronze or self- lubricating bushing		Very high	Very light	Low	Moderate / High
 Flanged bronze or self-lubricating bushing 		Very high	High	Low	Moderate / High
3. Ball bearings		Light / Moderate	Light	High	Low
 Opposed taper roller bearings 		Moderate	Moderate	High	Low
5. Special roller bearings	R.A.	High	Light / Moderate	High	Low
 Special roller or cylindrical roller bearings and thrust washers or thrust bearings 	E B	High	Very high	High	Low
 Needle roller bearings and thrust washers or thrust bearings 	A	Very high	Very high	High	Low

7.2 BEARING SEALS

Bearing seals perform two main functions

1) To prevent the ingress of material which will affect the life of performance of the bearing.

and/or

2) To retain lubricant particularly in hot or hostile environment. Some typical sealing arrangements are illustrated:

DESCRIPTION	GENERAL Arrangement	APPLICATION NOTES
1. Bearings with seals and/or metal shields		Seals can be on one (outer) side only for lubrication via a grease nipple, or sealed bolt sides in "sealed for life" applications. Seals of this type are not generally available for roller bearings.
2. Metal external shields		The simplest way of shielding roller or taper roller bearings, but without providing a complete seal.
3. Spring loaded lip seals		Provides excellent sealing. Spring should face outwards for grease renewal via a nipple and to prevent ingress of material, and inwards to retain lubricant in "sealed for life" applications. Normal temperature range -10°C to +100°C.
4. Felt seals		Useful in high temperature applications in conjunction with suitable lubricants. Provide effective sealing of split housing.
5. "O" ring seals		Can provide complete sealing, particularly against external pressure such as underwater applications. Suitable only for circumferential surface speeds of less than 30m/min and temperatures of 40°C - 110°C.
6. Pressed steel labyrinth		Suitable only for "sealed for life" applications as re-greasing via a nipple tends to force the labyrinth out of its housing. Extra sealing can be obtained by inserting greased felt washers within the labyrinth during assembly.
7. Machined labyrinth		Can be useful in conjunction with spring-loaded lip seals to provide the most effective seal in hostile environments

CASTORS

& WHEELS

8.0 ROLLING FRICTION

The main forces resisting initial movement and acceleration of a wheeled vehicle are:

- 1) The rolling friction between the wheel and the surface on which it rests and, in the case of tyred wheels the rolling resistance of the flat area of tread caused by static loading.
- 2) The friction within the wheel or axle bearings
- 3) The inertial resistance of the vehicle and load. The main forces resisting the maintenance of movement after acceleration from rest are 1) and 2) above (excluding the effect of a tyre "flat")

8.1 ROLLING FRICTION

8.1.1. Polyurethane tyred wheel:

- Guide figures for rolling resistance per wheel as a percentage of load per wheel
- 1) from rest , when the period of rest is 8 hours maximum= 5% of load
- 2) from rest, when the period of rest is greater than 8 hours =8% of load
- 3) to maintain a constant speed = 3% of load

Note: these figures are approximations as they are influenced by such factors as ambient temperatures, the track surface, the load/rest cycle timing, wheel diameter etc.

8.1.2 Rail wheels

When a body rolls on a surface, the forces resisting the motion is termed rolling friction. The force required to overcome rolling friction of a rail wheeling constant motion is determined by the equation $F = \cdot xP$ Where:

F = Force required to overcome rolling friction (kgf) per wheel

 λ = Lambda, the coefficient of rolling friction

P = Load per wheel (kg)

8.1.2.1 Determining the coeficient of rolling friction λ The contact pressure (Hertz) between wheel and rail being determined by the equation

Pa = 2xP

πxBxb

Where:

- Pa = Contact pressure (Hertz) in Kgl/mm2
- P = Load on Wheel (kg)
- b = Useable rail width (mm) see 6.2.4
- a = half the width of thin 'plane contact zone' between wheel and rail

a= <u>4xPxR</u> ~xPxb

Where:

- P = Load on wheel (kg)
- R = Radius of wheel (mm)
- b = Useable rail width (mm)
- 8 = Effective Youngs Modulus of plasticity
- = 7470 Kg/mm2 for an iron wheel on a steel rail
- = 11200 kg/mm2 for a steel wheel on a steel rail

8.2 BEARING FRICTION

For the purpose of determining the force required to start or maintain a wheel in motion the frictional resistance of ball or roller bearings, with the coefficient in the region of 0.002, can be disregarded.

The force required to overcome bearing friction for plain bearings is determined by the

equation F= µxPxd

D

Where: F = force required to overcome bearing friction (kg)

- μ = the coefficient of friction
- P = load on wheel (kg)
- d = diameter of axle (mm)
- D = diameter of wheel (mm)

The table gives guide figures for the coefficient of friction p for roller bearings and for various plain bearing materials running on a smooth steel axle.

	COEFFICIANT OR FRICTION μ				
BEANING WATENIAL	LUBRICATED	UNLUBRICATED			
Cast iron	0.21	0.40			
Bronze	0.16	0.35			
Thin wall PTFE/Load					
wrapped brushes	0.02 - 0.20	0.02 - 0.20			

The lubricated coefficient should be used for wheels in motion, and the unlubricated coefficient for wheels a testing form a period a

coefficient for wheels starting from a period of rest under static load (which assumes the worst condition.)

8.3 INERTIAL RESISTANCE

To calculate the force required to accelerate the mass of the vehicle and its load from rest with

a uniform rate of acceleration on a level track.

1) V	Vhen	the	time	taken	to	achieve	the	final	velocity is	known	F=	: MxV

2 x s x g

2) when the distance taken to achieve the final velocity is known F= MxV1

Where: F = force required to overcome inertia (kg)

- M = total mass of vehicle and load (kg)
- V1= final velocity (m/sec)
- t = time taken to achieve final velocity from rest (secs)
- s = distance taken to achieve final velocity from rest (m)
- g = force of gravity = 9.81m/sec2

9.0 TRACTION - COEFFICIENT OF FRICTION

The traction of a driving wheel = $\mu x P$

Where µ= the coefficient of friction for a given wheel material and track surface.

P= the load of the wheel

Guides values for coefficients of friction p, for wheel and tyre materials in contact with various surfaces are given:

	WHEEL OR TYRE MATERIAL								
BEANING WATENAE	RUBBER	POLYURETHANE	STEEL	CAST IRON	NYLON				
Dry steel	0.8	0.7	0.6	0.4	0.4				
Wet steel	0.5	0.4	0.4	0.3	0.15				
Dry smooth concrete	0.8	0.7	-	-	-				
Wet smooth concrete	0.5	0.6	-	-	-				
Dry rough concrete	1.0	0.8	-	-	-				
Wet rough concrete	0.9	0.6	-	-	-				
lce	0.1	0.1	0.02	0.02	-				

CASTORS

& WHEELS

In installations where support wheels drive the drum we recommend that the driving wheels be positioned on the upwardly rotating side of the drum (as shown bellow) which is the more heavily laden side.

To determine the required "Maximum Load Rating" for wheels at each support position for the purpose of wheel selection:

11.0 KEYWAY DIMENSIONS - PARALLEL KEY

(to commercial tolerances - keyways toBS4G: part 1 : 1958 and BS4235: part2: 1972 available to order)

METRIC				
BORE Ø	KEY SECTION			
+0.05	WIDTH	HEIGHT	ʻd' - 0.0+0.2	
12	4	4	1.8	
20	6	6	2.8	
25	8	7	3.3	
30	8	7	3.3	
35	10	8	3.3	
40	12	8	3.3	
50	14	9	3.8	
60	18	11	4.4	
75	20	12	4.8	
100	28	16	6.4	
150	36	20	8.4	

INCH				
BORE Ø KEY		ECTION	KEYWAY	
+0.002	WIDTH	HEIGHT	ʻd'-0.00+6.006	
0.5	0.125	0.125	0.060	
0.75	0.188	0.190	0.088	
1.00	0.250	0.250	0.115	
1.25	0.312	0.250	0.112	
1.50	0.375	0.250	0.100	
2.00	0.500	0.312	0.131	
2.50	0.625	0.438	0.185	
3.00	0.750	0.500	0.209	
3.50	0.875	0.625	0.264	
4.00	1.00	0.750	0.318	

12.0 REFERANCE TABLES AND CONVERSION FACTORS

12.1 Hardness conversions and equivalent tensile strength

VICKERS HARDNESS	BRINELL HARDNESS	ROCKWELL	EQUIVALEN TENSILE S	IT ULTIMATE STRENGTH
NUMBER HV	NUMBER BHN	HRC	N/mm	Tons/m
500	-	49.7	1599	103
490	-	49.0	1560	101
480	-	48.2	1536	99
470	446.5	47.5	1504	97
460	437.0	46.7	1472	95
450	427.5	45.9	1441	93
440	418.0	45.1	1409	91
430	408.5	44.3	1377	89
420	399.0	43.5	1345	87
410	389.5	42.6	1314	85
400	380.0	41.7	1282	83
390	370.5	40.8	1250	81
380	361.0	39.8	1219	79
370	351.5	38.8	1100	77
360	342.0	37.8	1155	75
350	332.5	36.8	1124	73
340	323.0	35.7	1092	71
330	313.5	34.5	1059	60
320	304.0	33.5	1020	67
310	294.5	32.2	997	65
300	275.5	30.9	965	62
290	266.0	29.6	934	60
280	256.5	28.2	902	58
270	247.0	26.7	870	56
260	237.5	25.1	838	54
250	228.0	23.5	807	52
240	218.5	21.8	774	50
230	209.0	20.0	743	46
220	199.5	-	712	44
210	190.0	-	680	42
200	180.5	-	648	38
190	171.0	617	40	36
180	161.5	-	584	34
170	152.0	-	553	32
160	142.5	-	522	30
150	133.0	-	480	28
140	123.5	-	458	-
130	-	-	427	-

IANE

12.2 TENSILE STRENGTHS OF HEAT TREATED STEELS

HEAT TREATMENT	TENSILE STRENGTH RANGE		
CONDITION	N/mm	Tons/m	
Р	550 - 700	34 - 45	
Q	625 - 775	40 - 50	
R	700 - 850	45 - 55	
S	775 - 925	50 - 60	
Т	850 - 1000	55 - 65	
U	925 - 1075	60 - 70	
V	1000 - 1150	65 - 75	
W	1075 - 1225	70 - 80	

12.3 USEFULL CONVERSION FACTORS

	TO CONVERT		ТО		MULTIPLY BY
Length:	Inch	(In)	metre	(m)	0.0254
	feet	(n)	metre	(m)	0.3048
Area:	square inch	(In2)	square millimetre	(mm2)	645.16
Volume:	cubic inch	(In3)	cubic metre	(m3)	16.30x10'6
	cubic foot	(n3)	cubic metre	(m3)	0.02832
Mass:	kilogramme	(kg)	newton	(N)	9.807
	pound	(lb)	newton	(N)	4.448
	pound	(lb)	kilogramme	(kg)	0.4530
Torque:	pound force inch	(lbf.in)	kilogramme force metre	(kgf.m)	0.0115
	pound force inch	(lbf.in)	newton millimetre	(Nmm)	113.0
Pressure/	pound per square inch	(lb/in2)	newton per square millimetre	(Nmm2)	0.006895
Stress:	pound per square inch	(lb/in2)	newton per square millimetre	(Nmm2)	15.445

13.0 CASTORS

13.1 Examples of Possible Castor Arrangements

2 Swivel Castors and 2 Fixed Castors

Providing good load capacity and manoeuvrability, this arrangement ensures accurate steering even on long straight runs, making it the most practical arrangement for industrial use. Any trolley with this castor arrangement should be pushed with the fixed castors leading

Maximum loading = $\frac{\text{Gross Load}}{3}$

4 Swivel Castors

As this arrangement gives good load capacity with exceptional manuverability, it is suitable for winding runs and where sideways action is required. It is not recommended for straight runs or ramps, as it may be hard to guide, especially over bumpy terrain and when heavily loaded. However, equipping two castors with directional locks makes this arrangement very versatile and suitable for long straight runs.

Maximum loading = <u>Gross Load</u> for each castor 3

1 Swivel Castor and 2 Fixed Castors

This arrangement provides an economical solution for lightly loaded trolleys requiring good manoeuvrability. The trolley must be reasonably small in size and any load must be evenly distributed to ensure stability.

maximum loading for each castor = $\frac{\text{Gross Load}}{2.5}$

2 SWIVEL Castors and 2 Fixed Castors centrally pivoting

Ideal for confined spaces this arrangement provides good load capacity with excellent manoeuvrability. The fixed castors can be replaced by an 'A' series axle assembly and wheels which pivot the trolley centrally. In this case, 25mm of packing is necessary above the two fixed castors (wheels) to give alternating load support. However if the trolley is tipped or the load is not evenly distributed the swivel castors are subjected to shock loads.

The entire load rests on the two central, fixed castors/wheels Maximum loading for each wheel/castor = <u>Gross Load</u>

2

CASTORS & WHEELS

CASTORS & WHEELS

4 Swivel Castors and 2 Fixed Castors centrally pivoting This arrangement provides an extremely high load capacity, with great manoeuvrability and stabillity. This is ideal for very long trolleys destined to carry heavy loads. The fixed castors can be replaced by wheels mounted onto a central 'A'series axle. The units base must be robust and the swivel castors are mounted to allow the trolley to pivot on the central wheels. Therefore, 25mm of packaging is required above the two fixed castors(wheels) to give alternating load support, depending on which pair of wheels is in contact with the floor. The entire load rests on 2 central, fixed castors/wheels.

Please note that the swivel castors are subjected to shock loads if the trolley is tipped or the load is not evenly distributed.

Maximum loading for each wheel/castor = Gross Load

3 Swivel Castors

This provides good load capacity with excellent manoeuvrability, However equipment with this arrangement will be difficult to guide on straight runs particularly over uneven ground This arrangement is ideal for barrel dollies and small portable machines.

Maximum loading for each wheel = $\frac{\text{Gross Load}}{2.5}$

13.1

13.1.1

2 Fixed Castors centrally pivoting

Suitable for moderate loads and long, straight runs with occasional changes in direction. The two central fixed castors can be replaced by wheels mounted onto a central 'A' series axle. The two end castors are mounted as to pivot the trolley centrally, 25mm of parking is necessary above the central castors (wheels) to give alternating load support. However if the trolley is tipped or the load is not evenly distributed, the end castors are subject to shock loads. The entire load rests on the 2 central, fixed castors/wheels.

CASTORS

& WHEELS

Maximum loading for each wheel/castor = Gross Load

- 1) Fixed and directional lock swivel castors the mounting holes in the top plates are clearance holes and it is essential to align the castors to sign the castors correctly before the bolts are finally tightened.
- 2) Swivel castors It is essential they are mounted with the swivel axis vertical
- 13.1.3 IMPORTANT NOTE The formulae above for the maximum loading for each castor is for an equally distributed load.

13.2 Load rating

- 13.2.1 Limitations to stand maximum load rating for each model number:
 - a) Untyred wheels refer to design data para 2.0
 - b) rubber tyred wheels refer to design data para 3.0
 - c) Polyurethane tyred wheels refer to design data para 4.0

13.2.2 Floor Conditions

The stated maximum load rating for each model assumes that the floor is reasonably level and free from cracks, obstructions, guide rails, gullies etc.

If any of the above are present on the operating environment then a castor with a load rating several times greater than calculated must be used. In addition the wheel diameter must be large enough to easily manoeuvre over cracks, ridges and other obstructions.

